Remote-sensing the urban area: Automatic building extraction based on multiresolution segmentation and classification

نویسندگان

  • Neeti Shrivastava
  • Praveen Kumar Rai
چکیده

Multiresolution segmentation is a new procedure for image object extraction. It allows the segmentation of an image into a network of homogeneous image regions at any chosen resolution. These image objects represent image information in an abstracted form and serve as building blocks for subsequent classifications. An exercise was undertaken to perform and study an object oriented segmentation and classification using high resolution satellite data (Cartosat-1 fused with IRS-1C, LISS IV data) for automatic building extraction in India. The study area covered the administrative area of BHEL (Bharat Heavy Electrical Limited) colony of Haridwar, Uttrakhand ( 29°56'55.51"N to 29°56'11.49"N latitude and 78°05'42.45"E to 78°07'00.9"E longitude). Two approaches were used for feature extraction, namely, applying different spatial filers, and objectoriented fuzzy classification. The merged image was filtered using the different high pass filters like Kirsch, Laplace, Prewitt, Sobel, Canny filtered images. The results showed that the overall accuracy of classified image was 0.93 and the Kappa accuracy was 0.89. The producer accuracy for building, vegetation and shadow were 0.9545, 1.0 and 0.8888 respectively whereas user accuracy for building, vegetation and shadow are 1.0, 0.9375 and 1.0 respectively. The overall classification accuracy based on TTA mask (training and test area mask) was 0.97 while the Kappa accuracy was 0.95. The producer accuracy for building, forest and shadow were 1.0, 1.0 and 0.7144 respectively and the user accuracy for building, vegetation and shadow were 1.0, 0.9375 and 1.0 respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Automatic Building Detection Approaches Combining High Resolution Images and LiDAR Data

In this paper, two main approaches for automatic building detection and localization using high spatial resolution imagery and LiDAR data are compared and evaluated: thresholding-based and object-based classification. The thresholding-based approach is founded on the establishment of two threshold values: one refers to the minimum height to be considered as building, defined using the LiDAR dat...

متن کامل

Segmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)

The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information.  There are different types of segmentation methods among which using  superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...

متن کامل

A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to trad...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015